7,669 research outputs found

    K-shell x-ray spectroscopy of atomic nitrogen

    Full text link
    Absolute {\it K}-shell photoionization cross sections for atomic nitrogen have been obtained from both experiment and state-of-the-art theoretical techniques. Due to the difficulty of creating a target of neutral atomic nitrogen, no high-resolution {\it K}-edge spectroscopy measurements have been reported for this important atom. Interplay between theory and experiment enabled identification and characterization of the strong 1s1s →\rightarrow npnp resonance features throughout the threshold region. An experimental value of 409.64 ±\pm 0.02 eV was determined for the {\it K}-shell binding energy.Comment: 4 pages, 2 graphs, 1 tabl

    Monte Carlo Neutrino Oscillations

    Full text link
    We demonstrate that the effects of matter upon neutrino propagation may be recast as the scattering of the initial neutrino wavefunction. Exchanging the differential, Schrodinger equation for an integral equation for the scattering matrix S permits a Monte Carlo method for the computation of S that removes many of the numerical difficulties associated with direct integration techniques

    Fatigue of notched fiber composite laminates. Part 1: Analytical model

    Get PDF
    A description is given of a semi-empirical, deterministic analysis for prediction and correlation of fatigue crack growth, residual strength, and fatigue lifetime for fiber composite laminates containing notches (holes). The failure model used for the analysis is based upon composite heterogeneous behavior and experimentally observed failure modes under both static and fatigue loading. The analysis is consistent with the wearout philosophy. Axial cracking and transverse cracking failure modes are treated together in the analysis. Cracking off-axis is handled by making a modification to the axial cracking analysis. The analysis predicts notched laminate failure from unidirectional material fatique properties using constant strain laminate analysis techniques. For multidirectional laminates, it is necessary to know lamina fatique behavior under axial normal stress, transverse normal stress and axial shear stress. Examples of the analysis method are given

    Coding for Cryptographic Security Enhancement using Stopping Sets

    Full text link
    In this paper we discuss the ability of channel codes to enhance cryptographic secrecy. Toward that end, we present the secrecy metric of degrees of freedom in an attacker's knowledge of the cryptogram, which is similar to equivocation. Using this notion of secrecy, we show how a specific practical channel coding system can be used to hide information about the ciphertext, thus increasing the difficulty of cryptographic attacks. The system setup is the wiretap channel model where transmitted data traverse through independent packet erasure channels with public feedback for authenticated ARQ (Automatic Repeat reQuest). The code design relies on puncturing nonsystematic low-density parity-check codes with the intent of inflicting an eavesdropper with stopping sets in the decoder. Furthermore, the design amplifies errors when stopping sets occur such that a receiver must guess all the channel-erased bits correctly to avoid an expected error rate of one half in the ciphertext. We extend previous results on the coding scheme by giving design criteria that reduces the effectiveness of a maximum-likelihood attack to that of a message-passing attack. We further extend security analysis to models with multiple receivers and collaborative attackers. Cryptographic security is enhanced in all these cases by exploiting properties of the physical-layer. The enhancement is accurately presented as a function of the degrees of freedom in the eavesdropper's knowledge of the ciphertext, and is even shown to be present when eavesdroppers have better channel quality than legitimate receivers.Comment: 13 pages, 8 figure
    • …
    corecore